Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide
نویسندگان
چکیده
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) ∝ t1/2. This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble's contact line.
منابع مشابه
Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400
Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...
متن کاملPreparation of Promoted Ni0.1Co0.9Fe2O4 Ferrite Nanoparticles and Investigation of Its Catalytic Activity on Decomposition of H2O2 and Optical Characterization of Pure Ni0.1Co0.9Fe2O4
Pure and ZnO-doped Ni0.1Co0.9Fe2O4 catalyst were prepared by co-precipitation method and thermal decomposition in air calcinated at 400-700°C and that treated with different amounts of zinc nitrate (0.46-2.25 w% ZnO). X-ray powder diffractometry, scanning electron microscopy (SEM) and BET analysis of nitrogen adsorption isotherms investigated the crystalline bulk structure and the surface area ...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کاملPreparation of Promoted Ni0.1Co0.9Fe2O4 Ferrite Nanoparticles and Investigation of Its Catalytic Activity on Decomposition of H2O2 and Optical Characterization of Pure Ni0.1Co0.9Fe2O4
Pure and ZnO-doped Ni0.1Co0.9Fe2O4 catalyst were prepared by co-precipitation method and thermal decomposition in air calcinated at 400-700°C and that treated with different amounts of zinc nitrate (0.46-2.25 w% ZnO). X-ray powder diffractometry, scanning electron microscopy (SEM) and BET analysis of nitrogen adsorption isotherms investigated the crystalline bulk structure and the surface area ...
متن کاملCatalytic Decomposition of H2O2 on MnFe2O4 Nanocomposites Synthesized by Various Methods in the Presence of Silicate and Zeolite Supports
In this research iron manganese oxide nanocomposites were prepared by co-precipitation, sol-gel and mechanochemical methods by using iron (III) nitrate, iron (II) sulfate and manganese (II) nitrate as starting materials. These nanocomposites were prepared in the presence of various catalyst beds. The polyvinyl pyrrolidon (PVP) was used as a capping agent to control the agglomeration of the nano...
متن کامل